Exponential Chebyshev Approximation on Finite Subsets of [0, 1]

By Bernard H. Rosman

Abstract. In this note the convergence of best exponential Chebyshev approximation on finite subsets of [0, 1] to a best approximation on the interval is proved when the function to be approximated is continuous and when the union of the finite subsets is dense in [0, 1].

1. Introduction. In this note we study the convergence of best exponential Chebyshev approximation on finite subsets of [0, 1] to a best approximation on the interval. This problem has been considered for linear approximation [1] and, recently, for generalized rational approximation in [2].

Let X, be a set of r distinct points in [0, 1], containing the endpoints (a common computational situation). We assume that the sequence of subsets $\{X_r\}$ fills up the interval in the sense that, given $x \in [0, 1]$, there is an $x_r \in X$, such that $\{x_r\} \to x$.

Following Rice [3, Chapter 8], we approximate $f \in C([0, 1])$ by exponential functions of the form

(1)
$$E(A, x) = \sum_{i=1}^{k} \left(\sum_{j=0}^{m_i} p_{ij} x^j \right) e^{i i x},$$

where $|p_{ij}| < \infty$, $|t_i| < \infty$ and $\sum_{i=1}^{k} (m_i + 1) \leq n$, n a fixed positive integer.

For each set X_r , we define the usual seminorm on C([0, 1]), corresponding to X_r , by

$$||f||_{X_r} = \sup_{x \in X_r} |f(x)|$$

for all f in C([0, 1]). We denote by $E(A_r, x)$ and $E_r(x)$ the best approximation to f(x) on X_r , i.e. the best approximation to f with respect to the seminorm corresponding to X_r . Norm signs without subscripts denote the usual Chebyshev norm.

It is known [3] that best approximation need not exist on finite point sets. However, we assume existence, a reasonable assumption in many computational situations. Moreover, Rice solves a special case of this problem through the use of pseudo functions [3, pp. 65–69]. An extension of this technique to handle general exponential approximation is under investigation.

2. The Convergence Theorem. The main result of this note is THEOREM 1. Let E^* be a best exponential approximation to f on [0, 1]. Then

$$||f - E_r||_{x_r} \rightarrow ||f - E^*||.$$

Copyright © 1971, American Mathematical Society

Received January 22, 1970, revised September 9, 1970.

AMS 1970 subject classifications. Primary 41A30, 41A50; Secondary 65D10.

Key words and phrases. Chebyshev approximation, exponential functions, varisolvence, pointwise convergence, uniform convergence.

Proof. First, suppose that $\{||E_r||\}$ is a bounded sequence. Then by a theorem in Rice [3, Chapter 8], $\{E_r(x)\}$, or a subsequence thereof, converges pointwise to a possibly discontinuous function

$$E(x) = E_0(x), \qquad 0 < x < 1,$$

= $e_0, \qquad x = 0,$
= $e_1, \qquad x = 1,$

where $E_0(x)$ is an exponential of form (1). We claim that E_0 is a best approximation to f on [0, 1]. For if not, there exists a point x such that $|f(x) - E_0(x)| > ||f - E^*||$. By continuity, we may assume that $x \in [\delta, 1 - \delta]$ where $\delta > 0$ is sufficiently small. Let $\{x_r\} \to x$ with $x_r \in X_r$, $\epsilon > 0$, and let y_1, \dots, y_n be in $[\delta, 1 - \delta]$. By the definition of varisolvence, there is a $\delta(\epsilon)$ such that the inequality $|Y_i - E_0(y_i)| < \delta(\epsilon)$ implies that there is a function E(A, y) satisfying $E(A, y_i) = Y_i$ and $|E(A, y) - E_0(y_i)| < \epsilon$. But since $E_r \to E_0$ pointwise on $[\delta, 1 - \delta]$, for r large enough, $|E_r(y_i) - E_0(y_i)| < \delta(\epsilon)$. Hence, there are functions $\{E(A_r, y)\}$ such that $E(A_r, y_i) = E_r(y_i)$. But since these interpolating functions are unique (m is the degree of solvence), $E(A_r, y) = E_r(y)$ for all y. Therefore, $|E_r(y) - E_0(y)| < \epsilon$ for y in $[\delta, 1 - \delta]$. Therefore, by a standard inequality, $|f(x_r) - E_r(x_r)| \rightarrow |f(x) - E_0(x)|$. Hence, for sufficiently large r, $|f(x_r) - E_r(x_r)| > ||f - E^*||$. This contradicts the fact that E_r is a best approximation on X_r and hence E_0 is a best approximation.

Suppose now that $\{||E_r||\}$ is an unbounded sequence. Following Dunham [2], define $B_r(x) = E_r(x)/||E_r||$. Then $\{||B_r||\}$ is a bounded sequence and, by the aforementioned result of Rice, we may assume that $\{B_r(x)\}$ converges pointwise to a function of the form

$$B(x) = B_0(x), \qquad 0 < x < 1,$$

= $b_0, \qquad x = 0,$
= $b_1, \qquad x = 1,$

where $B_0(x)$ is an exponential of form (1). Now, assume that $b_0 = B_0(0)$ and $b_1 = B_0(1)$. The B(x) is an exponential and, using varisolvence as before, it follows that $\{B_r\}$ converges uniformly to B. Since $||B_r|| = 1$, there exists $y \in [0, 1]$ and a neighborhood N of y such that $m = \inf_{x \in N} B(x) > 0$ and $B_r(x) > m/2$ for r sufficiently large. Hence, $\inf_{x \in N} E_r(x) \to \infty$ as $r \to \infty$ and, for large enough r, there exists $x_r \in X$, such that $E_r(x_r) > 2||f||$. This contradicts E_r being a best approximation to f on X_r since then

$$||f - E_r||_{x_r} > ||f|| \ge ||f||_{x_r} = ||f - 0||_{x_r}$$

It remains to consider the case where B(x) has an endpoint discontinuity. Assume without loss of generality that $B(x) = B_0(x)$, $0 < x \leq 1$, and $b_0 > B_0(0)$. If $B_0 \neq 0$, there exists $y \in [\delta, 1 - \delta]$, $\delta > 0$, such that $B_0(y) \neq 0$ and $\{B_r(y)\} \rightarrow B_0(y)$. Using the varisolvence of B_0 on this interval, we again contradict E_r being best on X_r . If $B_0 \equiv 0$, we reach the same contradiction on E_r since then $\{E_r(0)\}$ is unbounded. This concludes the proof.

If we cannot assume that the endpoints are in X_r , the proof goes through without change except for the last case. If $B_0 \equiv 0$ and if $0 \in X_r$ for only a finite set of r values

with b > 0, it follows from the properties of exponentials and the boundedness of $||E_r||_{x}$, that $\{E_r(x)\}$ is bounded on $[\delta, 1 - \delta], \delta > 0$. Hence, $\{E_r(x)\}$ or a subsequence thereof converges pointwise to $E_0(x)$, an exponential, on (0, 1). From this reasoning, as before using varisolvence, E_0 is a best approximation to f on [0, 1].

From the proof of Theorem 1 we have

COROLLARY. The sequence $\{E_r(x)\}$ has a subsequence which converges pointwise except possibly at the endpoints to a best exponential approximation, $E_0(x)$, to f on [0,1]. If the subsequence converges to $E_0(0)$ and $E_0(1)$ also, then the convergence is uniform.

Department of Mathematics **Boston University** Boston, Massachusetts 02215

1. T. J. RIVLIN & E. W. CHENEY, "A comparison of uniform approximations on an in-terval and a finite subset thereof," SIAM J. Numer. Anal., v. 3, 1966, pp. 311-320. MR 34 #4773.

2. C. B. DUNHAM, "Rational Chebyshev approximation on subsets," J. Approximation Theory, v. 1, 1968, pp. 484-487. MR 38 #6279.
3. J. R. RICE, The Approximation of Functions. Vol. 2; Nonlinear and Multivariate Theory, Addison-Wesley, Reading, Mass., 1969, MR 39 #5989.