
MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 115, juLy, 1971 

Exponential Chebyshev Approximation 
on Finite Subsets of [0, 11 

By Bernard H. Rosman 

Abstract. In this note the convergence of best exponential Chebyshev approximation 
on finite subsets of [0, 1] to a best approximation on the interval is proved when the function 
to be approximated is continuous and when the union of the finite subsets is dense in [0, 11. 

1. Introduction. In this note we study the convergence of best exponential 
Chebyshev approximation on finite subsets of [0, 1] to a best approximation on the 
interval. This problem has been considered for linear approximation [1] and, recently, 
for generalized rational approximation in [2]. 

Let X, be a set of r distinct points in [0, 1], containing the endpoints (a common 
computational situation). We assume that the sequence of subsets {Xj} fills up the 
interval in the sense that, given x E [0, 1], there is an x, E X, such that (x,} x. 

Following Rice [3, Chapter 8], we approximate f E C([O, 1]) by exponential 
functions of the form 

k fm .\ 

(1) ~~~~~E(A, x) pi E Epix i fix 
i-l j-O 

where jpI < co, Itil < c and l (mi + 1) ? n, n a fixed positive integer. 
For each set X,, we define the usual seminorm on C(O, 1]), corresponding to 

X,, by 

Ilflix? = SUp jf(x)j 
zEXr 

for all f in C([O, 1]). We denote by E(A,, x) and E,(x) the best approximation to f(x) 
on X,, i.e. the best approximation to f with respect to the seminorm corresponding 
to X,. Norm signs without subscripts denote the usual Chebyshev norm. 

It is known [3] that best approximation need not exist on finite point sets. How- 
ever, we assume existence, a reasonable assumption in many computational situations. 
Moreover, Rice solves a special case of this problem through the use of pseudo 
functions [3, pp. 65-69]. An extension of this technique to handle general exponential 
approximation is under investigation. 

2. The Convergence Theorem. The main result of this note is 
THEOREM 1. Let E* be a best exponential approximation to f on [0, 1]. Then 

I, if -, , I,,, I f E I1 
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Proof. First, suppose that {IIErJ } is a bounded sequence. Then by a theorem in 
Rice [3, Chapter 8], { Er(x) }, or a subsequence thereof, converges pointwise to a 
possibly discontinuous function 

E(x) = Eo(x), O < x <, 

= eo, X = 0, 

= el, x= 1, 

where EO(x) is an exponential of form (1). We claim that Eo is a best approximation 
to f on [0, 1]. For if not, there exists a point x such that If(x)- Eo(x)l > If -E* 1. By 
continuity, we may assume that x E [8, 1 - 8] where 8 > 0 is sufficiently small. 
Let txr}I -xwithx, E X,, e > 0, and lety1, * e ,ybein[, 1 - 8]. By the defini- 
tion of varisolvence, there is a 6(e) such that the inequality I - Eo,(yi)l < 6(e) 
implies that there is a function E(A, y) satisfying E(A, yi) = Y, and JE(A, y) - 

Ejy)J < e. But since Er-- E0 pointwise on [6, 1 - 8], for r large enough, IEryY) - 

Eo(yi)l < b(e). Hence, there are functions {E(Ar, y)} such that E(Ar, YJ) = Er(Yi)- 
But since these interpolating functions are unique (m is the degree of solvence), 
E(Ar' y) = Er(Y) for all y. Therefore, IEr(Y) - Eo(y)I < e for y in [6, 1 - 6]. Therefore, 
by a standard inequality, Jf(Xr) - Er(Xr)lIf(X)- E0(x)l. Hence, for sufficiently 
large r, If(Xr) - Er(Xr)l>llf- E*1J. This contradicts the fact that Er is a best 
approximation on Xr and hence E0 is a best approximation. 

Suppose now that {I IEr I I} is an unbounded sequence. Following Dunham [2], 
define Br(X) = Er(X)/I Er J. Then { I Bri I } is a bounded sequence and, by the afore- 
mentioned result of Rice, we may assume that { Br(X) } converges pointwise to a 
function of the form 

B(x)= Bo(x), 0 < x < 1, 

= bo, x = 0, 

= bl, x = 1, 

where BO(x) is an exponential of form (1). Now, assume that bo = Bo(O) and 
b, = B0(l). The B(x) is an exponential and, using varisolvence as before, it follows 
that {B.} converges uniformly to B. Since I Br I = 1, there exists y E [0, 1] and a 
neighborhood N of y such that m = inf.GN B(x) > 0 and Br(X) > m/2 for r 
sufficiently large. Hence, infzGN Er(X) *o as r -X and, for large enough r, 
there exists Xr ? Xr such that Er(Xr) > 211fil. This contradicts Er being a best 
approximation to f on Xr since then 

11f - ErjX,> > 1111>1 IIXIr = 11f - 0IIXr. 

It remains to consider the case where B(x) has an endpoint discontinuity. Assume 
without loss of generality that B(x) = Bo(x), 0 < x < 1, and bo > B0(O). If Bo p 0, 
there exists y E [6, 1 - 8], a > 0, such that BO(y) F 0 and { Br(Y) I -* Bo(y). Using the 
varisolvence of B, on this interval, we again contradict Er being best on Xr. If Bo E 0, 
we reach the same contradiction on Er since then {Er(O)} is unbounded. This con- 
cludes the proof. 

If we cannot assume that the endpoints are in Xr, the proof goes through without 
change except for the last case. If Bo 0 and if 0 ? X, for only a finite set of r values 
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with b > 0, it follows from the properties of exponentials and the boundedness of 
IIEI I x that {E,(x)} is bounded on [8, 1 - d], > 0. Hence, IEr(x)} or a subsequence 
thereof converges pointwise to E0(x), an exponential, on (0, 1). From this reasoning, 
as before using varisolvence, E0 is a best approximation to f on [0, 1]. 

From the proof of Theorem 1 we have 

COROLLARY. The sequence {E,(x)} has a subsequence which converges pointwise 
except possibly at the endpoints to a best exponential approximation, Eo(x), to f on 
[0,1]. If the subsequence converges to E0(O) and Eo(l) also, then the convergence is 
uniform. 
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